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Distributed vector representations for natural language vocabulary get a lot 
of attention in contemporary computational linguistics. This paper sum-
marizes the experience of applying neural network language models to the 
task of calculating semantic similarity for Russian. The experiments were 
performed in the course of Russian Semantic Similarity Evaluation track, 
where our models took from 2nd to 5th position, depending on the task.  
 We introduce the tools and corpora used, comment on the nature of the 
evaluation track and describe the achieved results. It was found out that 
Continuous Skip-gram and Continuous Bag-of-words models, previously 
successfully applied to English material, can be used for semantic modeling 
of Russian as well. Moreover, we show that texts in Russian National Corpus 
(RNC) provide an excellent training material for such models, outperform-
ing other, much larger corpora. It is especially true for semantic relatedness 
tasks (although stacking models trained on larger corpora on top of RNC 
models improves performance even more).  
 High-quality semantic vectors learned in such a way can be used in a va-
riety of linguistic tasks and promise an exciting field for further study.

Keywords: neural embeddings, machine learning, semantic similarity, dis-
tributional semantics, vector word representations, word2vec
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1. Introduction

This paper describes authors' experience with participating in Russian Semantic 
Similarity Evaluation (RUSSE) track. Our system was trained using neural network 
language models; the process is explained below, together with the workflow for 
evaluation. We also comment on the nature of the RUSSE tasks and discuss features 
of neural models for Russian.

Since Ferdinand de Saussure, it is known that linguistic sign (including word) 
is arbitrary. It means that there is no direct connection between its form and concept 
(meaning). Consequently, printed orthographic words per se do not contain sense. 
What is important for the task discussed here, is that if given only disjoint word forms, 
a computer (an artificial intelligence) can't hope to grasp the concepts behind them 
and decide whether they are semantically similar or not.

At the same time, detecting degree of semantic similarity between lexical units 
is an important task in computational linguistics. The reason is threefold. First, 
it is a means in itself: often, applications demand calculating the “semantic distance” 
between words, for example, in finding synonyms or near-synonyms for search query 
expansion or other needs [Turney and Pantel 2010]. Second, once we know which 
words are similar and to what extent, we can “draw a semantic map” of the language 
in question and use this knowledge in a multitude of tasks, from machine transla-
tion [Mikolov et al. 2013b] to natural language generation [Dinu and Baroni 2014]. 
Finally, measuring performance in semantic similarity task is a convenient way to es-
timate soundness of a semantic model in general.

Consequently, various methods of overcoming linguistic arbitrariness and calcu-
lating semantic similarity for natural language texts were invented and evaluated for 
many widespread languages. However, computational linguistics community lacks 
experience in computing semantic similarity for Russian texts. Thus, the task of ap-
plying state-of-the-art methods to this material promised to be interesting, and kept 
its promise.

The paper is structured as follows. In the Section 2 we give a brief outline of RUSSE 
evaluation track. The Section 3 describes the models we used to compute semantic simi-
larity and the corpora to train these models on. In the Section 4, results are evaluated 
and influence of various model settings discussed. The Section 5 lists the main results 
of our research. In the Section 6, we conclude and propose directions for future work.

2. Task Description

RUSSE1 is the first attempt at semantic similarity evaluation contest for Russian 
language. It consists of four tracks: two for the relatedness task and two for the asso-
ciation task. Participants were presented with a list of word pairs and had to fill in the 
degree of semantic similarity between each pair, in the range [0;1].

1 http://russe.nlpub.ru; the authors of the present paper are under the number 9 in the partici-
pants’ list.
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In the semantic relatedness task, participants were to detect word pairs in syn-
onymic, hyponymic or hypernymic relations and to separate them from unrelated 
pairs. First track test set in this task included word pairs with human-annotated simi-
larities between them. Systems' performance was measured with Spearman's rank 
correlation between these human scores and the system scores. The second track aim 
was to distinguish between semantically related pairs from RuThes Lite thesaurus 
[Лукашевич 2011] and random pairings. Average precision was used as evaluation 
metrics for this track and for the tracks in the second task.

In the association task, participants had to detect whether the words or multi-
word expressions are associated (topically related) to each other. First track in this 
task mixed random pairings and associations taken from the Russian Associative The-
saurus2. The second track test set included associations from Sociation.org database3.

An ideal system should have always assigned 0 to unrelated pairs and positive 
values to related or associated ones, thus achieving average precision of 1.0. In the 
case of the first semantic relatedness track an ideal system was to rank the pairs iden-
tically to the human judgment, to achieve Spearman’s rho of 1.0.

In the end, participants were rated with four scores: hj (Spearman’s rho for the 
first relatedness track), rt (average precision for the second relatedness track), ae (av-
erage precision for the first association track) and ae2 (average precision for the sec-
ond association track). The contest itself is described in detail in [Panchenko et al. 
2015]. We participated in all tracks, using different models.

In general, the choice of test data and evaluation metrics seems to be sound. 
However, we would like to comment on two issues.

1.  Test sets for the rt and ae2 tasks include many related word pairs which share 
long character strings (e.g., “благоразумие; благоразумность”). This allows 
reaching unexpectedly good performance without building any complicated 
models, using only character-level analysis. We were able to achieve average 
precision of 0.79 for rt task and 0.72 for ae2 task with the following algo-
rithm: if two words share strings more than 3 characters in length, choose 
the longest of such strings; its length divided by 10 is the semantic similarity 
between words; if no such strings are found, assume similarity is zero.  
It seems trivial that in Russian, words which share stems are virtually al-
ways semantically similar in this or that way. Thus, the contest would benefit 
if the ratio of such pairs became lower, so that the participants had to design 
systems that strive to understand meaning, not to compare strings of char-
acters. Certainly, this issue is conditioned by the usage of RuThes and Socia-
tion databases, which by design contain lots of related words with common 
stems. It is difficult to design a dataset of semantically related lexical units 
for Russian which would not be haunted by this problem. However, this 
is the challenge for organizers of the future evaluations. Other RUSSE tracks 
do not suffer from this flaw.

2 http://tesaurus.ru/dict/dict.php

3 http://sociation.org
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2.  The test set for the ae task was Russian Associative Thesaurus. It was collected 
between 1988 and 1997; many entries can already be considered a bit ar-
chaic (“колхоз; путь ильича”, “президент; ельцин”, etc). Perhaps, this is the 
reason for often observed disagreement in systems' performance measured 
in ae and in ae2. These datasets differ chronologically, and it greatly influ-
ences association sets. Note striking difference in comparison to semantic re-
latedness task: synonymic, hyponymic and hypernymic relations are stable for 
dozens or even hundreds of years, while associations can dramatically change 
in ten years, depending on social processes. At the same time, such glitches 
cover only small part of the entries, and this is only a minor remark.

In the next chapter we describe our approach to computing semantic similarity 
for Russian.

3. Neural Networks Meet Corpora

The methods of automatically measuring semantic similarity fall into two large 
groups: knowledge-based and distributional ones [Harispe et al. 2013]. The former 
depend on building (manually or semi-automatically) a comprehensive ontology for 
a given language, which functions as a conceptual network. Once such a network 
is complete, one can employ various measures to calculate distance between concepts 
in this network: in general, the shorter is the path, the higher is the similarity.

We employed other, distributional approach, motivated by the notion that mean-
ing is defined by usage and semantics can be derived from the contexts a given word 
takes [Lenci 2008]. Thus, these algorithms are inherently statistical and data-driven, 
not ruled by a curated conceptual system, as is the case for knowledge-based ones.

If lexical meaning is generally the sum of word usages, then the most obvious 
way to capture it is to take into account all contexts a word participates in, given 
a large enough corpus. In distributional semantics, words are usually represented 
as vectors in semantic space [Turney and Pantel 2010]. In other words, each lexical 
unit is a vector of its “neighborhood” to all other words in the lexicon, after applying 
various distances and weighting coefficients. The matrix of n rows and n columns 
(where n is the size of the lexicon) with “neighborhood degrees” in the cells is then 
a distributional model of the language. One can compare vectors for different words 
(e.g., calculating their cosine similarity) and find how “far” they are from each other. 
This distance turns out to be the semantic similarity we sought, expressed continu-
ously from 0 (totally unrelated words) to 1 (absolute synonyms).

Such an approach theoretically scales well (one has to simply add more texts 
to the corpus to get new words and contexts) and does not demand laborious and sub-
jective process of building an ontology. Meaning is extracted directly from linguistic 
evidence: the researcher only has to polish weighting algorithms. Also, fixed-length 
vector representations instead of orthographic words constitute excellent input to ma-
chine learning systems, independent of their particular aim.

The fly in the ointment is that traditional distributional semantic models (DSMs) 
are very computationally expensive. The reason is the dimensionality of their vectors, 
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generally equal to the size of the lexicon. As a result, a model has to operate on sparse 
but very large matrices. For example, if a corpus includes one million distinct word 
types (not a maximum value, as we show below), we will have to compute dot products 
of 1M-dimensional vectors each time we need to find how similar two words are. Vec-
tors' dimensionality can be reduced to reasonable values using tricks like singular value 
decomposition or principal components, but this often degrades performance or quality.

As a kind of remedy to this, artificial neural networks can learn distributed 
vector representations or “neural embeddings” of comparatively small size (usually 
hundreds of components) [Bengio 2003]. Neural models are directly trained on large 
corpora to produce vectors which maximize similarity between contextual neighbors 
found in the data, while minimizing similarity for unseen contexts. Vectors are initial-
ized randomly, but in the course of the training the model converges and semantically 
similar words obtain similar vector representations. However, these models were slow 
to train because of non-linear hidden layer.

Recently, Continuous Bag-of-Words (CBOW) and Continuous Skip-gram neu-
ral network language models without hidden layer, implemented in the Word2Vec tool 
[Mikolov et al. 2013a], seriously changed the field; using smart combination of already 
known techniques, they learn high quality embeddings in a very short time. These algo-
rithms clearly outperform traditional DSMs in various semantic tasks [Baroni et al. 2014].

For this competition, we tested both CBOW and skip-gram models. Evaluation 
results (for a wide range of settings) are given in Section 4.

In order to train neural language models one needs not only algorithms, but also 
corpora. We used 3 text collections:

1.  News: a corpus of contemporary Russian news-wire texts collected by a com-
mercial news aggregator. Corpus volume is about 1.8 billion tokens, more 
than 19 million word types. It was crawled from 1500 news portals, and 
news pieces themselves are dated from 1 September of 2013 to 30 June 
of 2014 (more than 9 million documents total).

2.  Web: a corpus of texts found on Russian web pages. It originates from 
a search index for one of the major search engines in the Russian market, 
thus is supposed to be quite representative. This source repository itself con-
tains billions of documents, but to train the model we randomly selected 
about 9 million pieces (no attention was paid to their source or any other 
properties). Thus, hopefully the corpus contains all major types of texts 
found in the Internet, in nearly all possible genres and styles.  
Boilerplate and templates were filtered out to leave only main textual con-
tent of these pages, with the help of boilerpipe library [Kohlschütter et al. 
2010]. After removing non-Cyrillic sentences, the resulting web corpus con-
tained approximately 940 million tokens.

3.  Ruscorpora: Russian National Corpus consists of texts which supposedly rep-
resent the Russian language as a whole. It has been developed for more than 
10 years by a large group of top-ranking linguists, who select texts and segments 
for inclusion into the corpus. It was extensively described in the literature (see 
[Плунгян 2005], [Савчук 2005]). The size of the main part of RNC is 230 mil-
lion word tokens, but we worked with the dump containing 174 million tokens.
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All the corpora were lemmatized with MyStem [Segalovich 2003]. We used ver-
sion 3.0 of the software, with disambiguation turned on. Stop-words were removed, 
as well as single-word sentences (they are useless for constructing context vectors). 
Because we removed stop-words ourselves, word2vec sub-sampling feature was not 
used. After this pre-processing, News corpus contained 1,300 million tokens, Web 
corpus 620 million tokens, and Ruscorpora 107 million tokens.

These corpora represent three different “stimuli” to neural network training 
algorithm. Ruscorpora is a balanced academic corpus of decent but comparatively 
small size, Web is large, but noisy and unbalanced. Finally, News is even larger than 
Web, but cleaner and biased towards one particular genre. These differences caused 
different results in semantic similarity tasks for models trained on the corpora in ques-
tion (although all corpora proved to be good training sets).

We note that Ruscorpora, notwithstanding its size, certainly won this race, re-
ceiving scores essentially higher than the models trained on other two collections. 
The details are given in the next section.

4. Evaluation

There can be two reasons for a model to perform worse in comparison to the 
gold standard in this evaluation contest: either the model outputs incorrect similarity 
values (cosine distances in our case), or one or both words in the presented pair are 
unknown to the model. The former can be treated only by re-training the model with 
different settings or different training set, while the latter can be partially remedied 
by a couple of tricks, both of which we used.

The first trick exploits the issue described in the Section 2: many semantically 
similar words in Russian have common stems. We “computed” similarity using the 
longest common string algorithm in case of unknown words, as a kind of “emer-
gency treatment”. For Ruscorpora models it consistently increased average precision 
in rt track by 0.02 ... 0.05.

Another trick is building model assemblies, allowing to “fall back” to another 
model in case when unknown words are met. In our case, we knew that Ruscorpora 
model is the best, but only for the words it knows. The Web model is slightly worse, 
but knows a lot more distinct words (millions instead of hundreds of thousands). Thus, 
we query Web model for the word pairs unknown to Ruscorpora. Similarity measures 
range strictly from 0 to 1 and are generally compatible across models. Only if the words 
are unknown even to the Web model, we fall back further to the longest common string 
trick. In our experience, such assemblies seriously improved overall performance.

Most important training parameters for our task are algorithm, vector size, win-
dow size and frequency threshold. The algorithm can be either CBOW or skip-gram, 
with the latter being considerably slower. Also, skip-gram performance was consistently 
worse for all corpora except news. This seems to be specific for Russian, as previous 
research for English corpora stated that skip-gram is generally better [Mikolov 2013a].

Vector size is the number of dimensions in vector representations; increasing vec-
tor size generally increases both performance and training time. Window is context 
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width: how many words to the right and to the left will be considered. Larger window 
size increases training time and also leads to the model being more “topical” opposed 
to “functional” [Levy and Goldberg 2014]. It means that the model assigns similar 
vectors to topically associated words, not only to direct semantic relatives (synonyms, 
etc). This is quite natural, as the model trains on neighbors more distant from the ana-
lyzed lexical units. Unsurprisingly, models trained on large windows perform better 
in association tasks, while those trained on micro-windows of size 1 or 2 (only imme-
diate neighbors) excel at catching direct semantic or functional relations.

Finally, frequency threshold or minimal count is a minimum frequency a word 
must possess in order to be considered by the model. All the lexical units with lower 
frequency are ignored during training and are not assigned vector representations. 
It is useful in order to get rid of low-frequency noise and train only on sufficiently 
presented evidence. Moreover, the less distinct words the model possess, the faster 
is training; the downside is, of course, absence of some words in the model lexicon.

In our experience, typical training speed on an Intel Xeon E5620 2.4GHz ma-
chine (14 cores) was 116,386 words per second for CBOW algorithm. Web corpus 
model training with vector size 500, minimal count 100, window 10 and 5 iterations 
(epochs) took approximately 7 hours; the model saw 3 168 819 885 words in total. 
This timing is consistent with [Mikolov et al. 2013a].

The Table 1 presents our best-performing models, as submitted to RUSSE contest.

Table 1. Our best results submitted to the evaluation

Track hj rt ae ae2

Rank (among 
18 participants)

2 5 5 4

Training 
settings

CBOW on Rus-
corpora with 
context window 
5, minimal 
count 5 + CBOW 
on Web with 
context window 
10, minimal 
count 2

CBOW on Rus-
corpora with 
context window 
5, minimal 
count 5 + 
CBOW on Web 
with context 
window 10, 
minimal count 2

Skip-gram 
on News 
with context 
window 10, 
minimal 
count 10

CBOW 
on Web 
with 
context 
window 5, 
minimal 
count 2

Score 0.7187 0.8839 0.8995 0.9662

Note that minimal count values (defining how much of low-frequency long tail 
is cut off) are different for different corpora. The optimal setting possibly depends 
on the vocabulary distribution in a particular text collection, and on how closely it fol-
lows Zipfian law. We leave this for further research.

It is clear that Ruscorpora beats both Web and News corpus in the task of distin-
guishing semantically related words. This is impressive considering its size: it seems 
that balance and clever selection of texts for corpus do really make sense and allow 
the model to learn very high quality vectors. However, when we turn to the task 



Kutuzov A., Andreev I.

 

of detecting associations, sheer volume and diversity of News and Web become para-
mount, and they outperform Ruscorpora models. It is interesting that News model 
is better with predicting associations from Russian Associative Thesaurus. Probably, 
this reflects more “official” spirit of this resource in comparison with more colloquial 
nature of Sociaton.org database in the ae2 track, better modeled with Web texts.

The plots below show how performance in different RUSSE tracks depends 
on training settings. Two parameters did not change: training mode (CBOW for Rus-
corpora and Web and skip-gram for News) and minimal count (5 for Ruscorpora, 
2 for Web and 10 for News); they reproduce the values in the Table 1. Only selected 
plots are shown here; see the link to the others in the Section 5.

The plots prove that while increasing vector size generally leads to quality in-
crease, after a certain threshold this growth can sometimes stop or even revert4. This 
is the case for Ruscorpora (Fig. 1), but not for Web (Fig. 2) or News. We hypothesize 
that the reason is the size of these two corpora: the volume of data allows filling vec-
tor components with meaningful relationships, while with Ruscorpora the model 
can't learn so many relationships because of data insufficiency; as a result, vectors are 
filled with noise. This is again consistent with the notion that vector size increase must 
be accompanied by data growth, expressed in [Mikolov et al. 2013].

fig. 1. Ruscorpora model performance in rt track depending on vector size

4 Vector sizes start with 52, because training time is optimal when dimensionality is a multiple of 4.
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fig. 2. Web model performance in rt track depending on vector size

As for the window size dynamics, we observe clear direct correlation between 
window size and ae2 performance and inverse correlation for rt performance (Fig. 3). 
As already stated, a shorter window favors strict functional and semantic relations, 
while a larger window (10 words and more) allows catching more vague topical rela-
tions. Interestingly, Ruscorpora models are better at ae task with short windows, un-
like ae2 (Fig. 4); perhaps, associations from ae dictionary are more syntagmatic and 
tend to occur close to each other, while Sociation pairs are topical par excellence. This 
further proves deep difference between these two associative tasks.

5. Discussion

The first result of our research is that neural embedding models are shown 
to be directly applicable to Russian semantic similarity tasks. Rich morphology does 
not pose an obstacle for learning meaningful vector representations, with prepro-
cessing limited to lemmatizing (training on unlemmatized text decreases perfor-
mance, unlike English tasks where one often doesn't need to even stem the corpus). 
The result is very persuasive. We believe it is worth to try augmenting many NLP 
tools for Russian with neural embeddings to make existing instruments more seman-
tically aware.
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fig. 3. News model performance in rt track depending on window size

fig. 4. Ruscorpora model performance in ae track depending on window size
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Another, more unexpected outcome of our participation in RUSSE was that Rus-
sian National Corpus (RNC) turned out to be an excellent training set for neural net-
work language models. When at start, we were sure that the amount of data plays 
dominant role and that the national corpus will eventually lose, because of being sub-
stantially smaller. However, it was quite the opposite: in the majority of comparisons 
(especially for semantic relatedness task) models trained on RNC outperformed their 
competitors, often even with vectors of lower dimensionality.

The only explanation is that RNC is really representative of the Russian language, 
thus providing balanced linguistic evidence for all major vocabulary tiers. Addition-
ally, it seems to contain little or no noise and junk fragments, which sometimes occur 
in other corpora. To sum it up, we certainly recommend training neural language 
models on RNC, if this resource is available.

The resulting models for each of the three corpora, trained with optimal settings, 
can be downloaded at http://ling.go.mail.ru/misc/dialogue_2015.html; the full set 
of performance plots for different training settings is also there.

6. Future Work

We have only scratched the surface of exploiting neural embeddings to deal with 
Russian language material. The next step should be to perform a comprehensive study 
of errors typical for each model in their semantic similarity or other decisions. This 
can shed light on the real nature of differences between models and help in studying 
human errors.

Another very interesting field of research is corpora comparison through the out-
put of neural language models trained on them [Kutuzov and Kuzmenko 2015]. Here 
we, in a way, arrive to an almost omnipotent “mind” able to rapidly evaluate huge 
corpora, taking into consideration what meanings words in their vocabularies take 
and how they are different from each other.

Of course, this is not an exhaustive outlook of computational linguistics research 
directions related to neural lexical vectors. Their foundational nature allows to em-
ploy them everywhere meaning is important; we anticipate a serious growth in se-
mantic tools' quality.

Last but not least, we plan to implement a full-fledged web service for testing and 
querying distributed semantic models for Russian, particularly neural ones. A proto-
type to try with is already available online at http://ling.go.mail.ru/dsm.
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